Kinetics and mechanism for reduction of anticancer active tetrachloroam(m)ine platinum(IV) compounds by glutathione

Kelemu Lemma, Johan Berglund, Nicholas Farrell, Lars Ivar Elding

Research output: Contribution to journalArticlepeer-review

63 Citations (SciVal)

Abstract

Glutathione (GSH) reduction of the anticancer-active platinum(IV) compounds trans-[PtCl4(NH3)(thiazole)] (1), trans-[PtCl4(cha)(NH3)] (2), cis-[PtCl4(cha)(NH3)] (3) (cha=cyclohexylamine), and cis-[PtCl4(NH3)2] (4) has been investigated at 25 °C in a 1.0 M aqueous medium at pH 2.0–5.0 (1) and 4.5–6.8 (2–4) using stopped-flow spectrophotometry. The redox reactions follow the second-order rate law d[Pt(IV)]/dt=k[GSH] tot[Pt(IV)], where k is a pH-dependent rate constant and [GSH] tot the total concentration of glutathione. The reduction takes place via parallel reactions between the platinum(IV) complexes and the various protolytic species of glutathione. The pH dependence of the redox kinetics is ascribed to displacement of these protolytic equilibria. The thiolate species GS− is the major reductant under the reaction conditions used. The second-order rate constants for reduction of compounds 1–4 by GS− are (1.43±0.01)×107, (3.86±0.03)×106, (1.83±0.01)×106, and (1.18±0.01)×106 M−1 s−1, respectively. Rate constants for reduction of 1 by the protonated species GSH are more than five orders of magnitude smaller. The mechanism for the reductive elimination reactions of the Pt(IV) compounds is proposed to involve an attack by glutathione on one of the mutually trans coordinated chloride ligands, leading to two-electron transfer via a chloride-bridged activated complex. The kinetics results together with literature data indicate that platinum(IV) complexes with a trans Cl-Pt-Cl axis are reduced rapidly by glutathione as well as by ascorbate. In agreement with this observation, cytotoxicity profiles for such complexes are very similar to those for the corresponding platinum(II) product complexes. The rapid reduction within 1 s of the platinum(IV) compounds with a trans Cl-Pt-Cl axis to their platinum(II) analogs does not seem to support the strategy of using kinetic inertness as a parameter to increase anticancer activity, at least for this class of compounds.
Original languageEnglish
Pages (from-to)300 - 306
Number of pages7
JournalJournal of Biological Inorganic Chemistry
Volume5
Issue number3
DOIs
Publication statusPublished - 2000

Subject classification (UKÄ)

  • Inorganic Chemistry
  • Medicinal Chemistry

Keywords

  • Anti cancer active compounds
  • Platinum(IV)
  • Glutathione
  • Reduction
  • Reaction mechanism

Fingerprint

Dive into the research topics of 'Kinetics and mechanism for reduction of anticancer active tetrachloroam(m)ine platinum(IV) compounds by glutathione'. Together they form a unique fingerprint.

Cite this