Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

Marie Pier Hébert, Celia C. Symons, Miguel Cañedo-Argüelles, Shelley E. Arnott, Alison M. Derry, Vincent Fugère, William D. Hintz, Stephanie J. Melles, Louis Astorg, Henry K. Baker, Jennifer A. Brentrup, Amy L. Downing, Zeynep Ersoy, Carmen Espinosa, Jaclyn M. Franceschini, Angelina T. Giorgio, Norman Göbeler, Derek K. Gray, Danielle Greco, Emily HassalMercedes Huynh, Samuel Hylander, Kacie L. Jonasen, Andrea Kirkwood, Silke Langenheder, Ola Langvall, Hjalmar Laudon, Lovisa Lind, Maria Lundgren, Alexandra McClymont, Lorenzo Proia, Rick A. Relyea, James A. Rusak, Matthew S. Schuler, Catherine L. Searle, Jonathan B. Shurin, Christopher F. Steiner, Maren Striebel, Simon Thibodeau, Pablo Urrutia Cordero, Lidia Vendrell-Puigmitja, Gesa A. Weyhenmeyer, Beatrix E. Beisner

Research output: Contribution to journalArticlepeer-review

Abstract

Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl L−1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.

Original languageEnglish
Pages (from-to)19-29
JournalLimnology and Oceanography Letters
Volume8
Issue number1
DOIs
Publication statusPublished - 2023 Feb 3

Subject classification (UKÄ)

  • Ecology

Fingerprint

Dive into the research topics of 'Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments'. Together they form a unique fingerprint.

Cite this