Large Eddy Simulation of flame stabilisation dynamics and vortex control in a lifted H2/N2 jet flame

Christophe Duwig

Research output: Contribution to journalArticlepeer-review

4 Citations (SciVal)


Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.
Original languageEnglish
Pages (from-to)325-346
JournalCombustion Theory and Modelling
Issue number3
Publication statusPublished - 2011

Subject classification (UKÄ)

  • Fluid Mechanics and Acoustics


  • turbulent flame
  • lifted flame
  • auto-ignition
  • Large Eddy Simulation
  • vortex dynamics
  • flame and vortex control


Dive into the research topics of 'Large Eddy Simulation of flame stabilisation dynamics and vortex control in a lifted H2/N2 jet flame'. Together they form a unique fingerprint.

Cite this