Abstract
Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e. g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes.
Original language | English |
---|---|
Pages (from-to) | S241-S256 |
Journal | Journal of the Royal Society Interface |
Volume | 7 |
DOIs | |
Publication status | Published - 2010 |
Subject classification (UKÄ)
- Zoology
Free keywords
- magnetic compass
- compound eye
- pineal
- cryptochrome
- magnetoreception
- photoreception