Linear Modeling and Prediction in Diabetes Physiology

Marzia Cescon

Research output: ThesisLicentiate Thesis

385 Downloads (Pure)

Abstract

Diabetes Mellitus is a chronic disease characterized by the inability of the organism to autonomously regulate the blood glucose level due to insulin deficiency or resistance, leading to serious health damages. The therapy is essentially based on insulin injections and depends strongly on patient daily decisions, being mainly based upon empirical experience and rules of thumb. The development of a prediction engine capable of personalized on-the-spot decision making concerning the most adequate choice of insulin delivery, meal intake and exercise would therefore be a valuable initiative towards an improved management of the desease.

This thesis presents work on data-driven glucose metabolism modeling and short-term, that is, up to 120 minutes, blood-glucose prediction in Type 1 Diabetes Mellitus (T1DM) subjects.

In order to address model-based control for blood glucose regulation, low-order, individualized, data-driven, stable, physiological relevant models were identified from a population of 9 T1DM patients data. Model structures include: autoregressive moving average with exogenous inputs (ARMAX) models and state-space models.

ARMAX multi-step-ahead predictors were estimated by means of least-squares estimation; next regularization of the autoregressive coefficients was introduced. ARMAX-based predictors and zero-order hold were computed to allow comparison.

Finally, preliminary results on subspace-based multi-step-ahead multivariate predictors is presented.
Original languageEnglish
QualificationLicentiate
Awarding Institution
  • Department of Automatic Control
Supervisors/Advisors
  • Johansson, Rolf, Supervisor
Award date2011 Oct 4
Publisher
Publication statusPublished - 2011

Subject classification (UKÄ)

  • Control Engineering

Free keywords

  • system identification
  • prediction
  • biological systems

Fingerprint

Dive into the research topics of 'Linear Modeling and Prediction in Diabetes Physiology'. Together they form a unique fingerprint.
  • DIAdvisor

    Ståhl, F. (Researcher), Rönn, M. (Researcher), Cescon, M. (Researcher) & Johansson, R. (PI)

    2008/03/012012/02/29

    Project: Research

Cite this