Abstract
The complexity of Ca2+ cell signaling is dependent on a plethoria of Ca2+-binding proteins that respond to signals in different ranges of Ca2+ concentrations. Since the function of these proteins is directly coupled to their Ca2+-binding properties, there is a need for accurately determined equilibrium Ca2+-binding constants. In this work we outline the experimental techniques available to determine Ca2+-binding constants in proteins, derive the models used to describe the binding, and present CaLigator, software for least-square fitting directly to the measured quantity. The use of the software is illustrated for Ca2+-binding data obtained for two deamidated forms of calbindin D(9k), either an isospartate-56 (beta form) or a normal Asp-56 (alpha form). Here, the Ca2+-binding properties of the two isoforms have been studied using the chelator method. The alpha form shows similar Ca2+-binding properties to the wild type while the beta form has lost both cooperativety and affinity.
Original language | English |
---|---|
Pages (from-to) | 195-205 |
Journal | Analytical Biochemistry |
Volume | 305 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2002 |
Subject classification (UKÄ)
- Physical Chemistry