Abstract
We present measurements of two-particle angular correlations between high-transverse-momentum (2<pT<11 GeV/c) π0 observed at midrapidity (|η|<0.35) and particles produced either at forward (3.1<η<3.9) or backward (−3.7<η<−3.1) rapidity in d+Au and p+p collisions at √sNN=200 GeV. The azimuthal angle correlations for particle pairs with this large rapidity gap in the Au-going direction exhibit a characteristic structure that persists up to pT≈6 GeV/c and which strongly depends on collision centrality, which is a similar characteristic to the hydrodynamical particle flow in A+A collisions. The structure is absent in the d-going direction as well as in p+p collisions, in the transverse-momentum range studied. The results indicate that the structure is shifted in the Au-going direction toward more central collisions, similar to the charged-particle pseudorapidity distributions.
Original language | English |
---|---|
Journal | Physical Review C |
Volume | 98 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 |
Subject classification (UKÄ)
- Subatomic Physics