TY - JOUR
T1 - Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−1 of Pb+Pb data with the ATLAS detector
AU - ATLAS Collaboration
AU - Aad, G
AU - Åkesson, Torsten
AU - Bocchetta, Simona
AU - Corrigan, Eric Edward
AU - Doglioni, Caterina
AU - Geisen, Jannik
AU - Gregersen, Kristian
AU - Brottmann Hansen, Eva
AU - Hedberg, Vincent
AU - Jarlskog, Göran
AU - Kellermann, Edgar
AU - Konya, Balazs
AU - Lytken, Else
AU - Mankinen, Katja
AU - Marcon, Caterina
AU - Mjörnmark, Ulf
AU - Mullier, Geoffrey André Adrien
AU - Pöttgen, Ruth
AU - Poulsen, Trine
AU - Skorda, Eleni
AU - Smirnova, Oxana
AU - Zwalinski, L
PY - 2021
Y1 - 2021
N2 - This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses 2.2 nb−1 of integrated luminosity collected in 2015 and 2018 at sNN = 5.02 TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy ETγ> 2.5 GeV, pseudorapidity |ηγ| < 2.37, diphoton invariant mass mγγ> 5 GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6–100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval. [Figure not available: see fulltext.] © 2021, The Author(s).
AB - This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses 2.2 nb−1 of integrated luminosity collected in 2015 and 2018 at sNN = 5.02 TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy ETγ> 2.5 GeV, pseudorapidity |ηγ| < 2.37, diphoton invariant mass mγγ> 5 GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6–100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval. [Figure not available: see fulltext.] © 2021, The Author(s).
KW - Hadron-Hadron scattering (experiments)
UR - https://doi.org/10.1007/JHEP11(2021)050
U2 - 10.1007/JHEP03(2021)243
DO - 10.1007/JHEP03(2021)243
M3 - Article
SN - 1029-8479
VL - 2021
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 3
M1 - 243
ER -