TY - JOUR
T1 - Measurement of multi-particle azimuthal correlations in pp, p + Pb and low-multiplicity Pb + Pb collisions with the ATLAS detector
AU - Aaboud, M
AU - Aad, G
AU - Abbott, B.
AU - Abdallah, J
AU - Abdinov, O
AU - Abeloos, B
AU - Åkesson, Torsten
AU - Bocchetta, Simona
AU - Doglioni, Caterina
AU - Hedberg, Vincent
AU - Jarlskog, Göran
AU - Kalderon, Charles
AU - Lytken, Else
AU - Mjörnmark, Ulf
AU - Poulsen, Trine
AU - Smirnova, Oxana
AU - Viazlo, Oleksandr
AU - ATLAS Collaboration
N1 - Export Date: 12 July 2017
PY - 2017
Y1 - 2017
N2 - Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at s = 5.02 and 13 TeV and in p + Pb collisions at sNN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at sNN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb+Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity. © 2017, CERN for the benefit of the ATLAS collaboration.
AB - Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at s = 5.02 and 13 TeV and in p + Pb collisions at sNN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb+Pb collisions at sNN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb+Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb+Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity. © 2017, CERN for the benefit of the ATLAS collaboration.
U2 - 10.1140/epjc/s10052-017-4988-1
DO - 10.1140/epjc/s10052-017-4988-1
M3 - Article
C2 - 29200942
SN - 1434-6044
VL - 77
JO - European Physical Journal C
JF - European Physical Journal C
IS - 6
M1 - 428
ER -