Abstract
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on Ne20 is now known to within better than 25% at the relevant temperatures and densities.
Original language | English |
---|---|
Article number | 065805 |
Journal | Physical Review C |
Volume | 100 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2019 Dec 24 |
Subject classification (UKÄ)
- Subatomic Physics