Measurements of the laminar burning velocities and NO concentrations in neat and blended ethanol and n-heptane flames

Marco Lubrano Lavadera, Christian Brackmann, Gianluca Capriolo, Torsten Methling, Alexander A. Konnov

Research output: Contribution to journalArticlepeer-review

3 Citations (SciVal)
1 Downloads (Pure)


Adiabatic laminar burning velocities and post-flame NO mole fractions for neat and blended ethanol and n-heptane premixed flames were experimentally determined using a heat flux burner and laser-induced fluorescence. The flames were stabilized at atmospheric pressure and at an initial temperature of 338 K, over equivalence ratios ranging from 0.6 to 1.5. These experiments are essential for the development, validation and optimization of chemical kinetic models, e.g. for the combustion of gasoline-ethanol fuel mixtures. It was observed that the addition of ethanol to n-heptane leads to an increase in laminar burning velocity that is not proportional to the ethanol content and to a decrease of NO formation. Such a NO reduction is due to the slightly lower flame temperatures of ethanol, which decrease the production of thermal-NO at 0.6 < Φ < 1.2, while under fuel-rich conditions this behavior is due to the lower concentrations of CH radicals, which decrease the production of prompt-NO. At Φ > 1.3, the lower NO formation through the prompt mechanism in the ethanol flames is partially offset by a lower rate of NO consumption through the reburning mechanism. New experimental results were compared with predictions of the POLIMI detailed chemical kinetic mechanism. An excellent agreement between measurements and simulated results was observed for the laminar burning velocities over the equivalence ratio range investigated; however, discrepancies were found for the NO mole fractions, especially under rich conditions. Further numerical analyses were performed to identify the main causes of the observed differences. Differences found at close-to stoichiometric conditions were attributed to an uncertainty in the thermal-NO mechanism. In addition, disagreement under rich conditions could be explained by the relative importance of reactions in hydrogen cyanide consumption pathways.

Original languageEnglish
Article number119585
Early online date2020 Nov 14
Publication statusPublished - 2021 Mar 15

Subject classification (UKÄ)

  • Energy Engineering
  • Atom and Molecular Physics and Optics


  • Ethanol
  • Heat flux method
  • Laminar burning velocity
  • LIF
  • n-Heptane
  • Nitric oxide


Dive into the research topics of 'Measurements of the laminar burning velocities and NO concentrations in neat and blended ethanol and n-heptane flames'. Together they form a unique fingerprint.

Cite this