Abstract
Organic solar cells (OSCs) consisting of an ultralow-bandgap nonfullerene acceptor (NFA) with an optical absorption edge that extends to the near-infrared (NIR) region are of vital interest to semitransparent and tandem devices. However, huge energy-loss related to inefficient charge dissociation hinders their further development. The critical issues of charge separation as exemplified in NIR-NFA OSCs based on the paradigm blend of PTB7–Th donor (D) and IEICO–4F acceptor (A) are revealed here. These studies corroborate efficient charge transfer between D and A, accompanied by geminate recombination of photo-excited charge carriers. Two key factors restricting charge separation are unveiled as the connection discontinuity of individual phases in the blend and long-lived interfacial charge-transfer states (CTS). By incorporation of a third-component of benchmark ITIC or PC71BM with various molar ratios, these two issues are well-resolved accordingly, yet in distinctly influencing mechanisms. ITIC molecules modulate film morphology to create more continuous paths for charge transportation, whereas PC71BM diminishes CTS and enhances electron transfer at the D/A interfaces. Consequently, the optimal untreated ternary OSCs comprising 0.3 wt% ITIC and 0.1 wt% PC71BM in the blend deliver higher JSC values of 21.9 and 25.4 mA cm-2, and hence increased PCE of 10.2% and 10.6%, respectively.
Original language | English |
---|---|
Article number | 2001564 |
Journal | Advanced Functional Materials |
Volume | 30 |
Issue number | 31 |
Early online date | 2020 |
DOIs | |
Publication status | Published - 2020 Aug 3 |
Subject classification (UKÄ)
- Condensed Matter Physics (including Material Physics, Nano Physics)
Free keywords
- charge and energy transfer
- charge recombination
- near-infrared
- nonfullerene acceptors
- organic solar cells