Megahertz serial crystallography

Max O Wiedorn, Dominik Oberthür, Richard Bean, Robin Schubert, Nadine Werner, Brian Abbey, Martin Aepfelbacher, Luigi Adriano, Aschkan Allahgholi, Nasser Al-Qudami, Jakob Andreasson, Steve Aplin, Salah Awel, Kartik Ayyer, Saša Bajt, Imrich Barák, Sadia Bari, Johan Bielecki, Sabine Botha, Djelloul BoukhelefWolfgang Brehm, Sandor Brockhauser, Igor Cheviakov, Matthew A Coleman, Francisco Cruz-Mazo, Cyril Danilevski, Connie Darmanin, R Bruce Doak, Martin Domaracky, Katerina Dörner, Yang Du, Hans Fangohr, Holger Fleckenstein, Matthias Frank, Petra Fromme, Alfonso M Gañán-Calvo, Yaroslav Gevorkov, Klaus Giewekemeyer, Helen Mary Ginn, Heinz Graafsma, Rita Graceffa, Dominic Greiffenberg, Lars Gumprecht, Peter Göttlicher, Janos Hajdu, Steffen Hauf, Michael Heymann, Susannah Holmes, Daniel A Horke, Joachim Schulz, BioXFEL, Anna Munke

Research output: Contribution to journalArticlepeer-review

Abstract

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a β-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

Original languageEnglish
Pages (from-to)4025
Number of pages1
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Megahertz serial crystallography'. Together they form a unique fingerprint.

Cite this