Abstract
Midkine shares several features in common with antibacterial proteins of the innate immune system. These include growth factor properties, heparin-binding regions, and effects on immune cells (i.e. recruitment and activation of neutrophils and macrophages). Indeed, recent research has demonstrated potent bactericidal and fungicidal activities of midkine. This protein is constitutively expressed at relevant concentrations at barriers of the body, such as in the skin and in the large airways, where the body first encounters potential pathogens. The antibacterial properties of midkine orthologues are preserved during evolution, as exemplified by miple2 of Drosophila. In addition to retinoic acid, gene expression can be promoted by additional factors present at sites of infection, reactive oxygen species, activation of the transcription factor NFκ-B, and hypoxia. In the light of the emerging resistance of pathogenic bacteria to conventional antibiotics, midkine is an interesting molecule that could serve as a template in developing novel pharmaceutical strategies against bacterial and fungal infections, either alone or in combination with conventional antibiotics.
Original language | English |
---|---|
Pages (from-to) | 859-869 |
Journal | British Journal of Pharmacology |
Volume | 171 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2014 |
Subject classification (UKÄ)
- Pharmacology and Toxicology