Millian Superiorities

Wlodek Rabinowicz, Gustaf Arrhenius

Research output: Contribution to journalArticlepeer-review

153 Downloads (Pure)

Abstract

Suppose one sets up a sequence of less-and-less valuable objects such that each object in the sequence is only marginally worse than its immediate predecessor. Could one in this way arrive at something that is dramatically inferior to the point of departure? It has been claimed that if there is a radical value difference between the objects at each end of the sequence, then at some point there must be a corresponding radical difference between the adjacent elements. The underlying picture seems to be that a radical gap cannot be scaled by a series of steps, if none of the steps itself is radical. We show that this picture is incorrect on a stronger interpretation of value superiority, but correct on a weaker one. Thus, the conclusion we reach is that, in some sense at least, abrupt breaks in such decreasing sequences cannot be avoided, but that such unavoidable breaks are less drastic than it has been suggested. In an appendix written by John Broome and Wlodek Rabinowicz, the distinction between two kinds of value superiority is extended to from objects to their attributes.
Original languageEnglish
Pages (from-to)127-146
JournalUtilitas
Volume17
Publication statusPublished - 2005

Subject classification (UKÄ)

  • Philosophy

Fingerprint

Dive into the research topics of 'Millian Superiorities'. Together they form a unique fingerprint.

Cite this