Modeling of a non-periodic boundary condition with entrance and exit in dissipative particle dynamics

Erik O. Johansson, Toru Yamada, Jinliang Yuan, Bengt Sundén

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceedingpeer-review

Abstract

Dissipative particle dynamics (DPD) have been widely used for the simulations of dynamics of both simple and complex fluids at nano/micro scales. In these simulations, periodic boundaries are usually employed in the main flow direction and the characterization of the flow and heat transfer is based on fully developed conditions. In the real nano/micro-fluidic devices, however, there are entrances and exits and the flow and temperature fields are not the same at different positions, making the periodic boundary conditions ill-suited due to problems with conservation of energy and momentum. This is the motivation of the present study to generate the non-periodic boundary condition having an entrance and an exit in the the DPD system and study the heat transfer characteristics in the entrance region. In this study, the entrance and exit regions are modelled for simulations of the flow in a parallel-plate channel based on the available methodology originally introduced for molecular dynamics. In this methodol-ogy, a body force acts on the DPD particles at the entrance region of the solution domain to generate the entrance region. This is region is so-called pump region. Also, a region to initiate the DPDe temperature was located followed by the pump region. Forced convection heat transfer of water flowing through a parallel-plate channel with constant wall temperature was simulated using this method. The simulations were implemented for different body forces in the pump region. The results were evaluated in terms of velocity, temperature and number density distributions in the channel and showed the effects of the compressibility of the DPD fluid and random movement (or Brownian motion). In addition, the Reynolds and Nusselt numbers were calculated to investigate their effects on the heat transfer characteristics at the entrance region.

Original languageEnglish
Title of host publicationASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
PublisherAmerican Society Of Mechanical Engineers (ASME)
ISBN (Electronic)9780791856871
DOIs
Publication statusPublished - 2015
EventASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems - San Francisco, United States
Duration: 2015 Jul 62015 Jul 9

Conference

ConferenceASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2015, collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
Country/TerritoryUnited States
CitySan Francisco
Period2015/07/062015/07/09

Subject classification (UKÄ)

  • Fluid Mechanics and Acoustics

Fingerprint

Dive into the research topics of 'Modeling of a non-periodic boundary condition with entrance and exit in dissipative particle dynamics'. Together they form a unique fingerprint.

Cite this