Abstract
Using X-ray photoelectron spectroscopy we studied the coadsorption of the amino acid l-cysteine and gold on a rutile TiO(2)(110) surface under ultrahigh vacuum conditions. Irrespective of the deposition order, i.e., irrespective of whether l-cysteine or gold is deposited first, the primary interaction between l-cysteine and the gold clusters formed at the surface takes place through the deprotonated thiol group of the molecule. The deposition order, however, has a profound influence on the size of the gold clusters as well as their location on the surface. If l-cysteine is deposited first the clusters are smaller by a factor two to three compared to gold deposited onto the pristine TiO(2)(110) surface and then covered by l-cysteine. Further, in the former case the clusters cover the molecules and thus form the outermost layer of the sample. We also find that above a minimum gold cluster size the gold cluster/l-cysteine bond is stronger than the l-cysteine/surface bridging oxygen vacancy bond, which, in turn, is stronger than the gold cluster/vacancy bond.
Original language | English |
---|---|
Pages (from-to) | 11466-11474 |
Journal | Langmuir |
Volume | 27 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2011 |
Subject classification (UKÄ)
- Physical Sciences
- Atom and Molecular Physics and Optics
- Natural Sciences