Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO(2) electrode.

Jianjun He, Gabor Benko, Ferenc Korodi, Tomas Polivka, Reiner Lomoth, Björn Åkermark, Licheng Sun, Anders Hagfeldt, Villy Sundström

Research output: Contribution to journalArticlepeer-review

Abstract

A zinc phthalocyanine with tyrosine substituents (ZnPcTyr), modified for efficient far-red/near-IR performance in dye-sensitized nanostructured TiO(2) solar cells, and its reference, glycine-substituted zinc phthalocyanine (ZnPcGly), were synthesized and characterized. The compounds were studied spectroscopically, electrochemically, and photoelectrochemically. Incorporating tyrosine groups into phthalocyanine makes the dye ethanol-soluble and reduces surface aggregation as a result of steric effects. The performance of a solar cell based on ZnPcTyr is much better than that based on ZnPcGly. Addition of 3alpha,7alpha-dihydroxy-5beta-cholic acid (cheno) and 4-tert-butylpyridine (TBP) to the dye solution when preparing a dye-sensitized TiO(2) electrode diminishes significantly the surface aggregation and, therefore, improves the performance of solar cells based on these phthalocyanines. The highest monochromatic incident photo-to-current conversion efficiency (IPCE) of approximately 24% at 690 nm and an overall conversion efficiency (eta) of 0.54% were achieved for a cell based on a ZnPcTyr-sensitized TiO(2) electrode. Addition of TBP in the electrolyte decreases the IPCE and eta considerably, although it increases the open-circuit photovoltage. Time-resolved transient absorption measurements of interfacial electron-transfer kinetics in a ZnPcTyr-sensitized nanostructured TiO(2) thin film show that electron injection from the excited state of the dye into the conduction band of TiO(2) is completed in approximately 500 fs and that more than half of the injected electrons recombines with the oxidized dye molecules in approximately 300 ps. In addition to surface aggregation, the very fast electron recombination is most likely responsible for the low performance of the solar cell based on ZnPcTyr.
Original languageEnglish
Pages (from-to)4922-4932
JournalJournal of the American Chemical Society
Volume124
Issue number17
DOIs
Publication statusPublished - 2002

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Chemical Physics (S) (011001060)

Subject classification (UKÄ)

  • Atom and Molecular Physics and Optics

Fingerprint

Dive into the research topics of 'Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO(2) electrode.'. Together they form a unique fingerprint.

Cite this