TY - JOUR
T1 - Molecular analysis of simple variant translocations in acute promyelocytic leukemia
AU - Borrow, Julian
AU - Shipley, Janet
AU - Howe, Kathy
AU - Kiely, Fiona
AU - Goddard, Audrey
AU - Sheer, Denise
AU - Srivastava, Arun
AU - Antony, Astok C
AU - Fioretos, Thoas
AU - Mitelman, Felix
PY - 1994
Y1 - 1994
N2 - The primary cytogenetic abnormality in acute promyelocytic leukemia (APL; FAB M3) is a reciprocal translocation, t(15;17)(q22;q12), which serves to fuse the PML gene on chromosome 15 to the retinoic acid receptor alpha (RARA) gene on chromosome 17. A PML-RARA fusion message transcribed from the der(15) is thought to mediate leukemogenesis. Two APL patients with simple variants of this translocation, t(3;15)(q21;q22) and t(X;15)(p11;q22), have previously been reported who lack cytogenetic involvement of chromosome 17, although their breakpoint positions on chromosome 15 still suggest the involvement of the PML gene. Here we report on a combined analysis by molecular genetics and in situ hybridization of these two patients, in which we wanted to determine whether the PML gene has alternative fusion partners or whether cryptic rearrangement of the RARA locus has occurred instead. A cryptic involvement of RARA was demonstrated in both patients by a combination of Southern analysis, reverse transcription coupled to PCR (RT-PCR), and fluorescence in situ hybridization. The results indicate an absolute requirement for the rearrangement of the RARA gene in the pathogenesis of APL and underline the importance of RARA during normal myeloid differentiation.
AB - The primary cytogenetic abnormality in acute promyelocytic leukemia (APL; FAB M3) is a reciprocal translocation, t(15;17)(q22;q12), which serves to fuse the PML gene on chromosome 15 to the retinoic acid receptor alpha (RARA) gene on chromosome 17. A PML-RARA fusion message transcribed from the der(15) is thought to mediate leukemogenesis. Two APL patients with simple variants of this translocation, t(3;15)(q21;q22) and t(X;15)(p11;q22), have previously been reported who lack cytogenetic involvement of chromosome 17, although their breakpoint positions on chromosome 15 still suggest the involvement of the PML gene. Here we report on a combined analysis by molecular genetics and in situ hybridization of these two patients, in which we wanted to determine whether the PML gene has alternative fusion partners or whether cryptic rearrangement of the RARA locus has occurred instead. A cryptic involvement of RARA was demonstrated in both patients by a combination of Southern analysis, reverse transcription coupled to PCR (RT-PCR), and fluorescence in situ hybridization. The results indicate an absolute requirement for the rearrangement of the RARA gene in the pathogenesis of APL and underline the importance of RARA during normal myeloid differentiation.
U2 - 10.1002/gcc.2870090403
DO - 10.1002/gcc.2870090403
M3 - Article
SN - 1045-2257
VL - 9
SP - 234
EP - 243
JO - Genes, Chromosomes and Cancer
JF - Genes, Chromosomes and Cancer
IS - 4
ER -