Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus

Ivanka Teneva, Balik Dzhambazov, R Mladenov, K Schirmer

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The accurate determination of species of Cyanoprokaryota/Cyanophyceae has many important applications. These include the assessment of risk with regard to blooms in water reservoirs as well as the identification of species capable of producing valuable bioactive compounds. Commonly, Cyanoprokaryota are classified based on their morphology. However, morphological criteria are not always reliable because they may change, for example, due to environmental factors. Thus, genetic and molecular analyses are a promising additional approach, but their application has so far been limited to relatively few genera. In light of this, we present here the first characterization of species and strains of the genus Phormidium Kutz. based on the cpcB-IGS-cpcA locus of the phycocyanin operon. In phylogenetic analyses using deduced amino acid sequences of the cpcB-cpcA regions, Phormidium was found to be polyphyletic. This analysis appeared to be dominated by the cpcB region, which is characterized by a relatively high percentage of informative substitutions. The percentage of variable positions within the cpcB-IGS-cpcA locus overall was 16.5%, thereby indicating a level of divergence remarkably higher than that reported for Nodularia and Arthrospira in previous studies relying on cpcB-IGS-cpcA. Further, alignment of informative nucleotide substitutions in the cpcB-IGS-cpcA sequences revealed a mosaic distribution, which may be indicative of genetic recombination events. Finally, the length and sequences of the IGS region alone proved useful as markers to differentiate the cyanobacterial genus Phormidium. However, whether the IGS region per se is sufficiently discriminatory to differentiate between Phormidium species or even strains requires further investigation using newly identified Phormidium sequence data.
    Original languageEnglish
    Pages (from-to)188-194
    JournalJournal of Phycology
    Volume41
    Issue number1
    DOIs
    Publication statusPublished - 2005

    Bibliographical note

    The information about affiliations in this record was updated in December 2015.
    The record was previously connected to the following departments: Medical Inflammation Research (013212019)

    Subject classification (UKÄ)

    • Immunology in the medical area

    Free keywords

    • phylogeny
    • systematics
    • taxonomy
    • operon
    • phycocyanin
    • Phormidium
    • intergenic spacer
    • Cyanoprokaryota
    • DNA

    Fingerprint

    Dive into the research topics of 'Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus'. Together they form a unique fingerprint.

    Cite this