Molecular assembly in block copolymer-surfactant nanoparticle dispersions: Information on molecular exchange and apparent solubility from high-resolution and pfg nmr

Guilherme A. Ferreira, Watson Loh, Daniel Topgaard, Olle Söderman, Lennart Piculell

Research output: Contribution to journalArticlepeer-review

Abstract

Internally structured block copolymer-surfactant particles are formed when the complex salts of ionic-neutral block copolymers neutralized by surfactant counterions are dispersed in aqueous media. Here, we report the1H NMR signal intensities and self-diffusion coefficients (D, from pulsed field gradient nuclear magnetic resonance, PFG NMR) of trimethyl alkylammonium surfac-tant ions and the poly(acrylamide)-block-poly(acrylate) (PAAm-b-PA) polyions forming such parti-cles. The results reveal the presence of an “NMR-invisible” (slowly exchanging) fraction of aggre-gated surfactant ions in the particle core and an “NMR-visible” fraction consisting of surface sur-factant ions in rapid exchange with the surfactant ions dissociated into the aqueous domain. They also confirm that the neutral PAAm blocks are exposed to water at the particle surface, while the PA blocks are buried in the particle core. The self-diffusion of the polyions closely agree with the self-diffusion of a hydrophobic probe molecule solubilized in the particles, showing that essentially all copolymer chains are incorporated in the aggregates. Through centrifugation, we prepared mac-roscopically phase-separated systems with a phase concentrated in particles separated from a clear dilute phase. D values for the surfactant and block copolymer indicated that the dilute phase con-tained small aggregates (ca. 5 nm) of surfactant ions and a few anionic-neutral block copolymer chains. Regardless of the overall concentration of the sample, the fraction of block copolymer found in the dilute phase was nearly constant. This indicates that the dilute fraction represented a tail of small particles created by the dispersion process rather than a true thermodynamic solubility of the complex salts.

Original languageEnglish
Article number3265
JournalPolymers
Volume13
Issue number19
DOIs
Publication statusPublished - 2021 Oct 1

Subject classification (UKÄ)

  • Physical Chemistry

Keywords

  • Block copolymer–surfactant complexes
  • Diffusion NMR
  • Molecular exchange

Fingerprint

Dive into the research topics of 'Molecular assembly in block copolymer-surfactant nanoparticle dispersions: Information on molecular exchange and apparent solubility from high-resolution and pfg nmr'. Together they form a unique fingerprint.

Cite this