TY - GEN
T1 - Monte Carlo simulation of breast tomosynthesis: visibility of microcalcifications at different acquisition schemes
AU - Petersson, Hannie
AU - Dustler, Magnus
AU - Tingberg, Anders
AU - Timberg, Pontus
PY - 2015
Y1 - 2015
N2 - Microcalcifications are one feature of interest in mammography and breast tomosynthesis (BT). To achieve optimal conditions for detection of microcalcifications in BT imaging, different acquisition geometries should be evaluated. The purpose of this work was to investigate the influence of acquisition schemes with different angular ranges, projection distributions and dose distributions on the visibility of microcalcifications in reconstructed BT volumes. Microcalcifications were inserted randomly in a high resolution software phantom and a simulation procedure was used to model a MAMMOMAT Inspiration BT system. The simulation procedure was based on analytical ray tracing to produce primary images, Monte Carlo to simulate scatter contributions and flatfield image acquisitions to model system characteristics. Image volumes were reconstructed using the novel method super-resolution reconstruction with statistical artifact reduction (SRSAR). For comparison purposes, the volume of the standard acquisition scheme (50 degrees angular range and uniform projection and dose distribution) was also reconstructed using standard filtered backprojection (FBP). To compare the visibility and depth resolution of the microcalcifications, signal difference to noise ratio (SDNR) and artifact spread function width (ASFW) were calculated. The acquisition schemes with very high central dose yielded significantly lower SDNR than the schemes with more uniform dose distributions. The ASFW was found to decrease (meaning an increase in depth resolution) with wider angular range. In conclusion, none of the evaluated acquisition schemes were found to yield higher SDNR or depth resolution for the simulated microcalcifications than the standard acquisition scheme.
AB - Microcalcifications are one feature of interest in mammography and breast tomosynthesis (BT). To achieve optimal conditions for detection of microcalcifications in BT imaging, different acquisition geometries should be evaluated. The purpose of this work was to investigate the influence of acquisition schemes with different angular ranges, projection distributions and dose distributions on the visibility of microcalcifications in reconstructed BT volumes. Microcalcifications were inserted randomly in a high resolution software phantom and a simulation procedure was used to model a MAMMOMAT Inspiration BT system. The simulation procedure was based on analytical ray tracing to produce primary images, Monte Carlo to simulate scatter contributions and flatfield image acquisitions to model system characteristics. Image volumes were reconstructed using the novel method super-resolution reconstruction with statistical artifact reduction (SRSAR). For comparison purposes, the volume of the standard acquisition scheme (50 degrees angular range and uniform projection and dose distribution) was also reconstructed using standard filtered backprojection (FBP). To compare the visibility and depth resolution of the microcalcifications, signal difference to noise ratio (SDNR) and artifact spread function width (ASFW) were calculated. The acquisition schemes with very high central dose yielded significantly lower SDNR than the schemes with more uniform dose distributions. The ASFW was found to decrease (meaning an increase in depth resolution) with wider angular range. In conclusion, none of the evaluated acquisition schemes were found to yield higher SDNR or depth resolution for the simulated microcalcifications than the standard acquisition scheme.
KW - breast tomosynthesis
KW - Monte Carlo simulation
KW - acquisition parameters
KW - software breast phantom
KW - microcalcification simulation
U2 - 10.1117/12.2081942
DO - 10.1117/12.2081942
M3 - Paper in conference proceeding
VL - 9412
SP - 94121H
BT - Medical Imaging 2015: Physics of Medical Imaging
PB - SPIE
T2 - Conference on Medical Imaging - Physics of Medical Imaging, 2015
Y2 - 22 February 2015 through 25 February 2015
ER -