TY - JOUR
T1 - Multi-marginal optimal transport using partial information with applications in robust localization and sensor fusion
AU - Elvander, Filip
AU - Haasler, Isabel
AU - Jakobsson, Andreas
AU - Karlsson, Johan
PY - 2020
Y1 - 2020
N2 - During recent decades, there has been a substantial development in optimal mass transport theory and methods. In this work, we consider multi-marginal problems wherein only partial information of each marginal is available, a common setup in many inverse problems in, e.g., remote sensing and imaging. By considering an entropy regularized approximation of the original transport problem, we propose an algorithm corresponding to a block-coordinate ascent of the dual problem, where Newton’s algorithm is used to solve the sub-problems. In order to make this computationally tractable for large-scale settings, we utilize the tensor structure that arises in practical problems, allowing for computing projections of the multi-marginal transport plan using only matrix-vector operations of relatively small matrices. As illustrating examples, we apply the resulting method to tracking and barycenter problems in spatial spectral estimation. In particular, we show that the optimal mass transport framework allows for fusing information from different time steps, as well as from different sensor arrays, also when the sensor arrays are not jointly calibrated. Furthermore, we show that by incorporating knowledge of underlying dynamics in tracking scenarios, one may arrive at accurate spectral estimates, as well as faithful reconstructions of spectra corresponding to unobserved time points.
AB - During recent decades, there has been a substantial development in optimal mass transport theory and methods. In this work, we consider multi-marginal problems wherein only partial information of each marginal is available, a common setup in many inverse problems in, e.g., remote sensing and imaging. By considering an entropy regularized approximation of the original transport problem, we propose an algorithm corresponding to a block-coordinate ascent of the dual problem, where Newton’s algorithm is used to solve the sub-problems. In order to make this computationally tractable for large-scale settings, we utilize the tensor structure that arises in practical problems, allowing for computing projections of the multi-marginal transport plan using only matrix-vector operations of relatively small matrices. As illustrating examples, we apply the resulting method to tracking and barycenter problems in spatial spectral estimation. In particular, we show that the optimal mass transport framework allows for fusing information from different time steps, as well as from different sensor arrays, also when the sensor arrays are not jointly calibrated. Furthermore, we show that by incorporating knowledge of underlying dynamics in tracking scenarios, one may arrive at accurate spectral estimates, as well as faithful reconstructions of spectra corresponding to unobserved time points.
KW - optimal mass transport
KW - multi-marginal problems
KW - entropy regularization
KW - spectral estimation
KW - array signal processing
KW - sensor fusion
U2 - 10.1016/j.sigpro.2020.107474
DO - 10.1016/j.sigpro.2020.107474
M3 - Article
VL - 171
JO - Signal Processing
JF - Signal Processing
SN - 0165-1684
M1 - 107474
ER -