Multi-radionuclide digital autoradiography of the intra-aortic atherosclerotic plaques using a monoclonal antibody targeting oxidized low-density lipoprotein.

Research output: Contribution to journalArticlepeer-review

127 Downloads (Pure)

Abstract

The aim of this study was to use multi-radionuclide autoradiography to compare the different distributions of three radiolabelled tracers in an atherosclerotic mouse model. This method, along with immunohistochemistry, was applied to investigate the intra-aortic distribution of 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG), (131)I/(125)I labeled anti-oxidized Low Density Lipoprotein (oxLDL), and non-binding control antibodies. Aortas were isolated from a total of 12 apoB-100/LDL receptor deficient mice 73 h post injection of radioiodine-labeled anti-oxLDL and control antibody and 1 h post injection of (18)F-FDG. A solid-state real-time digital autoradiography system was used to image the slide mounted aortas. Contributions from each radionuclide were separated by half-life and emission energy and the aortas were subsequently stained with Oil Red O for plaque to aorta contrast ratios. Immunohistochemical staining was performed to detect anti-oxLDL and control antibody localization. Radiolabeled anti-oxLDL showed increased total activity uptake in the aorta over control antibody and immunohistochemical analysis of plaques indicated increased binding of the specific antibody compared to control. The intra-aortic activity distribution of the anti-oxLDL antibody was however very similar to that of the control antibody although both had higher atherosclerotic plaques to aorta wall ratios than (18)F-FDG. Given the right choice of radionuclides, multi-radionuclide digital autoradiography can be employed to compare several tracers ex vivo in the same animal. The distribution of anti-oxLDL antibodies did not significantly differ from the control antibody but it did appear to have a better plaque to aorta contrast at 73 h post injection than (18)F-FDG at 1 h post injection.
Original languageEnglish
Pages (from-to)172-180
JournalAmerican journal of nuclear medicine and molecular imaging
Volume4
Issue number2
Publication statusPublished - 2014

Subject classification (UKÄ)

  • Radiology, Nuclear Medicine and Medical Imaging

Fingerprint

Dive into the research topics of 'Multi-radionuclide digital autoradiography of the intra-aortic atherosclerotic plaques using a monoclonal antibody targeting oxidized low-density lipoprotein.'. Together they form a unique fingerprint.

Cite this