TY - JOUR
T1 - Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands
AU - Olefeldt, David
AU - Roulet, Nigel T.
AU - Bergeron, Onil
AU - Crill, Patrick
AU - Backstrand, Kristina
AU - Christensen, Torben
PY - 2012
Y1 - 2012
N2 - Palsa mires, nutrient poor permafrost peatlands common in subarctic regions, store a significant amount of carbon (C) and it has been hypothesized their net ecosystem C balance (NECB) is sensitive to climate change. Over two years we measured the NECB for Stordalen palsa mire and found it to accumulate 46 g C m(-2) yr(-1). While Stordalen NECB is comparable to nutrient poor peatlands without permafrost, the component fluxes differ considerably in magnitude. Specifically, Stordalen had both lower growing season CO2 uptake and wintertime CO2 losses, but importantly also low dissolved organic carbon exports and hydrocarbon (mainly methane) emissions. Restricted C losses from palsa mires are likely to have facilitated C accumulation of unproductive subarctic permafrost peatlands. Continued climate change and permafrost thaw is likely to amplify several component fluxes, with an uncertain overall effect on NECB - highlighting the necessity for projections of high-latitude C storage to consider all C fluxes. Citation: Olefeldt, D., N. T. Roulet, O. Bergeron, P. Crill, K. Backstrand, and T. R. Christensen (2012), Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res. Lett., 39, L03501, doi: 10.1029/2011GL050355.
AB - Palsa mires, nutrient poor permafrost peatlands common in subarctic regions, store a significant amount of carbon (C) and it has been hypothesized their net ecosystem C balance (NECB) is sensitive to climate change. Over two years we measured the NECB for Stordalen palsa mire and found it to accumulate 46 g C m(-2) yr(-1). While Stordalen NECB is comparable to nutrient poor peatlands without permafrost, the component fluxes differ considerably in magnitude. Specifically, Stordalen had both lower growing season CO2 uptake and wintertime CO2 losses, but importantly also low dissolved organic carbon exports and hydrocarbon (mainly methane) emissions. Restricted C losses from palsa mires are likely to have facilitated C accumulation of unproductive subarctic permafrost peatlands. Continued climate change and permafrost thaw is likely to amplify several component fluxes, with an uncertain overall effect on NECB - highlighting the necessity for projections of high-latitude C storage to consider all C fluxes. Citation: Olefeldt, D., N. T. Roulet, O. Bergeron, P. Crill, K. Backstrand, and T. R. Christensen (2012), Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands, Geophys. Res. Lett., 39, L03501, doi: 10.1029/2011GL050355.
U2 - 10.1029/2011GL050355
DO - 10.1029/2011GL050355
M3 - Article
SN - 1944-8007
VL - 39
SP - L03501
JO - Geophysical Research Letters
JF - Geophysical Research Letters
ER -