Abstract
Background: Transcription factors are frequently involved in the process of cellular transformation, and many malignancies are characterized by a distinct genetic event affecting a specific transcription factor. This probably reflects a tissue specific ability of transcription factors to contribute to the generation of cancer but very little is known about the precise mechanisms that governs these restricted effects. Methods: To investigate this selectivity in target gene activation we compared the overall gene expression patterns by micro-array analysis and expression of target genes for the transcription factor EBF in lymphoma and neuroblastoma cells by RT-PCR. The presence of transcription factors in the different model cell lines was further investigated by EMSA analysis. Results: In pre-B cells mb-1 and CD19 are regulate by EBF-1 in collaboration with Pax-5 and E-proteins. We here show that neuroblastoma cells express these three, for B cell development crucial transcription factors, but nevertheless fail to express detectable levels of their known target genes. Expression of mb-1 could, however, be induced in neuroblastoma cells after disruption of the chromatin structure by treatment with 5-azacytidine and Trichostatin A. Conclusion: These data suggest that transcription factors are able to selectively activate target genes in different tissues and that chromatin structure plays a key role in the regulation of this activity.
Original language | English |
---|---|
Journal | BMC Cancer |
Volume | 4 |
DOIs | |
Publication status | Published - 2004 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Hematopoietic Stem Cell Laboratory (013022012), Molecular Tumour Biology (013017540)
Department affilation moved from v1000583 (Molecular Tumour Biology) to v1000562 (Department of Translational Medicine) on 2016-01-18 14:41:48.
Subject classification (UKÄ)
- Cancer and Oncology