New experimental approach to study host tissue response to surgical mesh materials in vivo

MW Laschke, JM Haufel, Henrik Thorlacius, MD Menger

Research output: Contribution to journalArticlepeer-review

56 Citations (SciVal)


Implantation of surgical meshes is a common procedure to increase abdominal wall stability in hernia repair. To improve biocompatibility of the implants, sophisticated in vivo animal models are needed to study inflammation and incorporation of biomaterials. Herein, we have established a new model that allows for the quantitative analysis of host tissue response and vascular ingrowth into surgical mesh materials in vivo. Ultrapro meshes were implanted into dorsal skinfold chambers of Syrian golden hamsters. Angiogenesis, microhemodynamics, microvascular permeability, and leukocyte-endothelial cell interaction of the host tissue were analyzed in response to material implantation over a 2-week period using intravital fluorescence microscopy. Mesh implantation resulted in a short-term activation of leukocytes, reflected by leukocyte accumulation and adherence in postcapillary venules. This cellular inflammatory response was accompanied by an increase of mac-romolecular leakage, indicating loss of integrity of venular endothelial cells. Angiogenesis started at day 3 after implantation by protrusion of capillary sprouts, originating from the host microvasculature. Until day 10, these sprouts interconnected with each other to form a new microvascular network. At day 14, the inflammatory response had disappeared and the vascular ingrowth was completed. Histology confirmed the formation of granulation tissue with adequate incorporation of the mesh filaments within the host tissue. We conclude that this novel model of surgical mesh implantation is a useful experimental approach to analyze host tissue response and vascular ingrowth of newly devised materials for hernia repair.
Original languageEnglish
Pages (from-to)696-704
JournalJournal of Biomedical Materials Research. Part A
Issue number4
Publication statusPublished - 2005

Subject classification (UKÄ)

  • Surgery


  • angiogenesis
  • inflammation
  • surgical mesh implant
  • biocompatibility
  • dorsal skinfold chamber


Dive into the research topics of 'New experimental approach to study host tissue response to surgical mesh materials in vivo'. Together they form a unique fingerprint.

Cite this