Abstract
Nickel oxide (NiO), deposited onto the strontium titanate (SrTiO3) (110)-(4 X 1) surface, was studied using photoemission spectroscopy (PES), X-ray absorption near edge structure (XANES), and low-energy He+ ion scattering (LEIS), as well as scanning tunneling microscopy (STM). The main motivation for studying this system comes from the prominent role it plays in photocatalysis. The (4 X 1) reconstructed SrTiO3(110) surface was previously found to be remarkably inert toward water adsorption under ultrahigh-vacuum conditions. Nickel oxide grows on this surface as patches without any apparent ordered structure. PES and LEIS reveal an upward band bending, a reduction of the band gap, and reactivity toward water adsorption upon deposition of NiO. Spectroscopic results are discussed with respect to the enhanced reactivity toward water of the NiO-loaded surface.
Original language | English |
---|---|
Pages (from-to) | 20481-20487 |
Journal | Journal of Physical Chemistry C |
Volume | 119 |
Issue number | 35 |
DOIs | |
Publication status | Published - 2015 |
Subject classification (UKÄ)
- Physical Chemistry (including Surface- and Colloid Chemistry)