On geodesic exponential maps of the Virasoro group

Adrian Constantin, T. Kappeler, B. Kolev, P. Topalov

Research output: Contribution to journalArticlepeer-review

Abstract

We study the geodesic exponential maps corresponding to Sobolev type right-invariant (weak) Riemannian metrics mu((k)) (k >= 0) on the Virasoro group Vir and show that for k >= 2, but not for k = 0, 1, each of them defines a smooth Frechet chart of the unital element e is an element of Vir. In particular, the geodesic exponential map corresponding to the Korteweg - de Vries (KdV) equation ( k = 0) is not a local diffeomorphism near the origin.
Original languageEnglish
Pages (from-to)155-180
JournalAnnals of Global Analysis and Geometry
Volume31
Issue number2
DOIs
Publication statusPublished - 2007

Subject classification (UKÄ)

  • Mathematics

Free keywords

  • geodesic exponential maps
  • Virasoro group

Fingerprint

Dive into the research topics of 'On geodesic exponential maps of the Virasoro group'. Together they form a unique fingerprint.

Cite this