On some generalizations of convex sets and convex functions

Research output: Contribution to journalArticlepeer-review

Abstract

A set $C$ in a topological vector space is said to be weakly convex if for any $x,y$ in $C$ there exists $p$ in $(0,1)$ such that $(1-p)x+py\in C$. If the same holds with $p$ independent of $x,y$, then $C$ is said to be $p$-convex. Some basic results are established for such sets, for instance: any weakly convex closed set is convex.
Original languageEnglish
Pages (from-to)1-6
JournalL'analyse numérique et la théorie de l'approximation
Volume14
Issue number1
Publication statusPublished - 1985
Externally publishedYes

Bibliographical note

Continues Revue d'analyse numérique et de théorie de l'approximation (1972) [ISSN 0301-9241]
Continued by Revue d'analyse numérique et de théorie de l'approximation (1992) [ISSN 1222-9024]

Varianttitlar

* Mathematica - Revue d'analyse numérique et de théorie de l'approximation / Académie de la République Socialiste de Roumanie, Filiale de Cluj-Napoca. L'analyse numérique et la théorie de l'approximation.

Subject classification (UKÄ)

  • Mathematics

Fingerprint

Dive into the research topics of 'On some generalizations of convex sets and convex functions'. Together they form a unique fingerprint.

Cite this