Abstract
The classic Sherman-Lauricella integral equation and an integral equation due to Muskhelishvili for the interior stress problem are modified. The modified formulations differ from the classic ones in several respects: Both modifications are based on uniqueness conditions with clear physical interpretations and, more importantly, they do not require the arbitrary placement of a point inside the computational domain. Furthermore, in the modified Muskhelishvili equation the unknown quantity, which is solved for, is simply related to the stress. In Muskhelishvili’s original formulation the unknown quantity is related to the displacement. Numerical examples demonstrate the greater stability of the modified schemes.
Original language | English |
---|---|
Pages (from-to) | 658-662 |
Journal | Journal of Applied Mechanics |
Volume | 67 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2000 |
Externally published | Yes |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Numerical Analysis (011015004)
Subject classification (UKÄ)
- Mathematical Sciences