Abstract
Using an eight-band k . p model Hamiltonian with the Burt-Foreman envelope function theory, we have investigated the optical absorption of both linearly and circularly polarized light, as well as related phenomena in InAs/GaSb broken-gap quantum wells grown along the [0 0 1] direction, with emphasis on the effects of electron-hole hybridization and the various symmetry-breaking mechanisms such as structural inversion asymmetry, bulk inversion asymmetry and interface Hamiltonian. The optical matrix elements exhibit unusual angular dependence in close connection with the spin-flip transitions which are originally forbidden. The spin split of the 2e subband results in two profound absorption peaks for the 1hh-2e transition for both linearly polarized and circularly polarized light. A large lateral optical anisotropy appears in the absorption coefficient of linearly polarized light, which can reach almost 100% with a reducing thickness of the quantum well. For the absorption of circularly polarized light, we found a large enhancement of electron spin polarization in the upper 2e subband, which was generally considered as forbidden if the polarization is along the direction perpendicular to the plane-of-light incidence.
Original language | English |
---|---|
Article number | 125044 |
Journal | Semiconductor Science and Technology |
Volume | 23 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2008 |
Subject classification (UKÄ)
- Condensed Matter Physics (including Material Physics, Nano Physics)