Abstract
Supersymmetric orbifold projection of N = 1 SQCD with relatively small number of flavors (N(f) ≤ N(c)) is considered. The purpose is to check whether orbifolding commutes with the infrared limit. On the one hand, one considers the orbifold projection of SQCD and obtains the low-energy description of the resulting theory. On the other hand, one starts with the low-energy effective theory of the original SQCD, and only then performs orbifolding. It is shown that at finite N(c) the two low-energy theories obtained in these ways are different. However, in the case of stabilized run-away vacuum these two theories are shown to coincide in the large N(c) limit. In the case of quantum modified moduli space, topological solitons carrying baryonic charges are present in the orbifolded low-energy theory. These solitons may restore the correspondence between the two theories provided that the soliton mass tends to zero in the large N(c) limit. (C) 2000 Elsevier Science B.V.
Original language | English |
---|---|
Pages (from-to) | 369-375 |
Number of pages | 7 |
Journal | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Volume | 492 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - 2000 Nov 2 |