Abstract
Quantum-dot-sensitized solar cells are emerging as a promising development of dye-sensitized solar cells, where photostable semiconductor quantum dots replace molecular dyes. Upon photoexcitation of a quantum dot, an electron is transferred to a high-band-gap metal oxide. Swift electron transfer is crucial to ensure a high overall efficiency of the solar cell. Using femtosecond time-resolved spectroscopy, we find the rate of electron transfer to be surprisingly sensitive to the chemical structure of the linker molecules that attach the quantum dots to the metal oxide. A rectangular barrier model is unable to capture the observed variation. Applying bridge-mediated electron-transfer theory, we find that the electron-transfer rates depend on the topology of the frontier orbital of the molecular linker. This promises the capability of fine tuning the electron-transfer rates by rational design of the linker molecules.
Original language | English |
---|---|
Pages (from-to) | 1157-1162 |
Journal | The Journal of Physical Chemistry Letters |
Volume | 5 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2014 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Chemical Physics (S) (011001060), Theoretical Chemistry (S) (011001039)
Subject classification (UKÄ)
- Theoretical Chemistry (including Computational Chemistry)
- Atom and Molecular Physics and Optics