Abstract
Oxygen supply is a critical point in technical processes when aerobic cells are used in immobilized preparations. In this study p-benzoquinone is used as a substitute for oxygen in the oxidation of glycerol to dihydroxyacetone by immobilized Gluconobacter oxydans cells. The reaction rate was much higher when p-benzoquinone was used compared to when oxygen was used. In an experiment with free cells p-benzoquinone gave a rate more than four times that of oxygen, and with immobilized cells the difference was even greater. p-benzoquinone is more effective than oxygen because it gives a higher maximal reaction rate (the reason for this fact is discussed) and because it is more soluble in water than oxygen. The operational stability of the process is comparatively good. In one experiment the productivity decreased from 60 to 10 mmol/h·g over an 8-day period when p-benzoquinone was used. When oxygen was used in a similar experiment the productivity decreased from 14 to 6 mmol/h·g. The byproduct formed from p-benzoquinone, hydroquinone, can be oxidized to p-benzoquinone which can be re-used. Seven succesive regenerations of p-benzoquinone were performed without any loss of efficiency.
Original language | English |
---|---|
Pages (from-to) | 296-302 |
Number of pages | 7 |
Journal | Applied Microbiology and Biotechnology |
Volume | 20 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1984 Nov 1 |
Subject classification (UKÄ)
- Bioprocess Technology