TY - JOUR
T1 - Ozone dose dependent formation and removal of ozonation products of pharmaceuticals in pilot and full-scale municipal wastewater treatment plants
AU - Kharel, Suman
AU - Stapf, Michael
AU - Miehe, Ulf
AU - Ekblad, Maja
AU - Cimbritz, Michael
AU - Falås, Per
AU - Nilsson, Josefine
AU - Sehlén, Robert
AU - Bester, Kai
PY - 2020
Y1 - 2020
N2 - The removal of micropollutants from municipal wastewater is challenged by the number of compounds with diverse physico-chemical properties. Ozonation is increasingly used to remove micropollutants from wastewater. However, ozonation does not necessarily result in complete mineralization of the organic micropollutants but rather transforms them into new compounds which could be persistent or have adverse environmental effects. To explore ozone dose dependency of the formation and successive removal of ozonation products, two pilot-scale and one full-scale ozonation plants were operated subsequent to a conventional activated sludge treatment. The results from these trials indicated that the concentrations of several N-oxides, such as Erythromycin N-oxide, Venlafaxine N-oxide and Tramadol N-oxide, increased up to an ozone dose of 0.56–0.61 mg O3/mg DOC while they decreased at elevated doses of 0.7–1.0 mg O3/mg DOC. Similar results were also obtained for two transformation products of Diclofenac (Diclofenac 2,5-quinone imine and 1-(2,6-dichlorophenyl)indolin-2,3-dione) and one transformation product of Carbamazepine (1-(2-benzoic acid)-(1H,3H)-quinazoline-2,4-dione), where the highest concentrations appeared around 0.27–0.31 mg O3/mg DOC. The formation maximum of a given compound occurred at a specific ozone dose that is characteristic for each compound, but seemed to be independent of the wastewater used for the experiments at the two pilots and the full-scale plant.
AB - The removal of micropollutants from municipal wastewater is challenged by the number of compounds with diverse physico-chemical properties. Ozonation is increasingly used to remove micropollutants from wastewater. However, ozonation does not necessarily result in complete mineralization of the organic micropollutants but rather transforms them into new compounds which could be persistent or have adverse environmental effects. To explore ozone dose dependency of the formation and successive removal of ozonation products, two pilot-scale and one full-scale ozonation plants were operated subsequent to a conventional activated sludge treatment. The results from these trials indicated that the concentrations of several N-oxides, such as Erythromycin N-oxide, Venlafaxine N-oxide and Tramadol N-oxide, increased up to an ozone dose of 0.56–0.61 mg O3/mg DOC while they decreased at elevated doses of 0.7–1.0 mg O3/mg DOC. Similar results were also obtained for two transformation products of Diclofenac (Diclofenac 2,5-quinone imine and 1-(2,6-dichlorophenyl)indolin-2,3-dione) and one transformation product of Carbamazepine (1-(2-benzoic acid)-(1H,3H)-quinazoline-2,4-dione), where the highest concentrations appeared around 0.27–0.31 mg O3/mg DOC. The formation maximum of a given compound occurred at a specific ozone dose that is characteristic for each compound, but seemed to be independent of the wastewater used for the experiments at the two pilots and the full-scale plant.
KW - Monitoring
KW - Ozonation
KW - Pharmaceuticals
KW - Transformation products
KW - Wastewater
U2 - 10.1016/j.scitotenv.2020.139064
DO - 10.1016/j.scitotenv.2020.139064
M3 - Article
C2 - 32413657
AN - SCOPUS:85084451761
SN - 0048-9697
VL - 731
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 139064
ER -