Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein.

Julie Lotharius, Patrik Brundin

Research output: Contribution to journalReview articlepeer-review

833 Citations (SciVal)


Parkinson's disease is a devastating neurological condition that affects at least four million people. A striking feature of this disorder is the preferential loss of dopamine-producing neurons in the midbrain. Several aetiological triggers have been linked to Parkinson's disease, including genetic mutations and environmental toxins, but the pathway that leads to cell death is unknown. Recent developments have shed light on the pathogenic mechanisms that underlie the degeneration of these cells. We propose that defective sequestration of dopamine into vesicles, leading to the generation of reactive oxygen species in the cytoplasm, is a key event in the demise of dopaminergic neurons in Parkinson's disease, and might represent a common pathway that underlies both genetic and sporadic forms of the disorder.
Original languageEnglish
Pages (from-to)932-942
JournalNature Reviews Neuroscience
Issue number12
Publication statusPublished - 2002

Subject classification (UKÄ)

  • Neurosciences


Dive into the research topics of 'Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein.'. Together they form a unique fingerprint.

Cite this