TY - JOUR
T1 - Performance of pile-up mitigation techniques for jets in pp collisions at √s=8 TeV using the ATLAS detector
AU - Aad, G
AU - Abbott, B.
AU - Abdallah, J
AU - Abdinov, O
AU - Aben, R
AU - Abolins, M
AU - Åkesson, Torsten
AU - Bocchetta, Simona
AU - BRYNGEMARK, LENE
AU - Doglioni, Caterina
AU - Floderus, Anders
AU - Hawkins, Anthony
AU - Hedberg, Vincent
AU - Ivarsson, Jenny
AU - Jarlskog, Göran
AU - Lytken, Else
AU - Mjörnmark, Ulf
AU - Smirnova, Oxana
AU - Viazlo, Oleksandr
AU - ATLAS Collaboration
N1 - Cited By :8
Export Date: 18 July 2017
PY - 2016
Y1 - 2016
N2 - The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb- 1data sample collected at a centre-of-mass energy of s=8TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented. © 2016, CERN for the benefit of the ATLAS collaboration.
AB - The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb- 1data sample collected at a centre-of-mass energy of s=8TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented. © 2016, CERN for the benefit of the ATLAS collaboration.
U2 - 10.1140/epjc/s10052-016-4395-z
DO - 10.1140/epjc/s10052-016-4395-z
M3 - Article
C2 - 28316490
SN - 1434-6044
VL - 76
JO - European Physical Journal C
JF - European Physical Journal C
IS - 11
M1 - 581
ER -