TY - JOUR
T1 - Personalized prediction of progression in pre-dementia patients based on individual biomarker profile
T2 - A development and validation study
AU - Kühnel, Line
AU - Bouteloup, Vincent
AU - Lespinasse, Jérémie
AU - Chêne, Geneviève
AU - Dufouil, Carole
AU - Molinuevo, José Luis
AU - Raket, Lars Lau
AU - MEMENTO study group and the Alzheimer's Disease Neuroimaging Initiative
PY - 2021
Y1 - 2021
N2 - Introduction: The prognosis of patients at the pre-dementia stage is difficult to define. The aim of this study is to develop and validate a biomarker-based continuous model for predicting the individual cognitive level at any future moment. In addition to personalized prognosis, such a model could reduce trial sample size requirements by allowing inclusion of a homogenous patient population. Methods: Disease-progression modeling of longitudinal cognitive scores of pre-dementia patients (baseline Clinical Dementia Rating ≤ 0.5) was used to derive a biomarker profile that was predictive of patient's cognitive progression along the dementia continuum. The biomarker profile model was developed and validated in the MEMENTO cohort and externally validated in the Alzheimer's Disease Neuroimaging Initiative. Results: Of nine candidate biomarkers in the development analysis, three cerebrospinal fluid and two magnetic resonance imaging measures were selected to form the final biomarker profile. The model-based prognosis of individual future cognitive deficit was shown to significantly improve when incorporating biomarker information on top of cognition and demographic data. In trial power calculations, adjusting the primary analysis for the baseline biomarker profile reduced sample size requirements by ≈10%. Compared to conventional cognitive cut-offs, inclusion criteria based on biomarker-profile cut-offs resulted in up to 28% reduced sample size requirements due to increased homogeneity in progression patterns. Discussion: The biomarker profile allows prediction of personalized trajectories of future cognitive progression. This enables accurate personalized prognosis in clinical care and better selection of patient populations for clinical trials. A web-based application for prediction of patients’ future cognitive progression is available online.
AB - Introduction: The prognosis of patients at the pre-dementia stage is difficult to define. The aim of this study is to develop and validate a biomarker-based continuous model for predicting the individual cognitive level at any future moment. In addition to personalized prognosis, such a model could reduce trial sample size requirements by allowing inclusion of a homogenous patient population. Methods: Disease-progression modeling of longitudinal cognitive scores of pre-dementia patients (baseline Clinical Dementia Rating ≤ 0.5) was used to derive a biomarker profile that was predictive of patient's cognitive progression along the dementia continuum. The biomarker profile model was developed and validated in the MEMENTO cohort and externally validated in the Alzheimer's Disease Neuroimaging Initiative. Results: Of nine candidate biomarkers in the development analysis, three cerebrospinal fluid and two magnetic resonance imaging measures were selected to form the final biomarker profile. The model-based prognosis of individual future cognitive deficit was shown to significantly improve when incorporating biomarker information on top of cognition and demographic data. In trial power calculations, adjusting the primary analysis for the baseline biomarker profile reduced sample size requirements by ≈10%. Compared to conventional cognitive cut-offs, inclusion criteria based on biomarker-profile cut-offs resulted in up to 28% reduced sample size requirements due to increased homogeneity in progression patterns. Discussion: The biomarker profile allows prediction of personalized trajectories of future cognitive progression. This enables accurate personalized prognosis in clinical care and better selection of patient populations for clinical trials. A web-based application for prediction of patients’ future cognitive progression is available online.
U2 - 10.1002/alz.12363
DO - 10.1002/alz.12363
M3 - Article
C2 - 34581496
AN - SCOPUS:85115875364
SN - 1552-5260
VL - 17
SP - 1938
EP - 1949
JO - Alzheimer's and Dementia
JF - Alzheimer's and Dementia
IS - 12
ER -