Phase transitions in the one-dimensional coulomb gas ensembles

Research output: Contribution to journalArticlepeer-review


We consider the system of particles on a finite interval with pairwise nearest neighbours interaction and external force. This model was introduced by Malyshev [Probl. Inf. Transm. 51 (2015) 31–36] to study the flow of charged particles on a rigorous mathematical level. It is a simplified version of a 3-dimensional classical Coulomb gas model. We study Gibbs distribution at finite positive temperature extending recent results on the zero temperature case (ground states). We derive the asymptotics for the mean and for the variances of the distances between the neighbouring charges. We prove that depending on the strength of the external force there are several phase transitions in the local structure of the configuration of the particles in the limit when the number of particles goes to infinity. We identify 5 different phases for any positive temperature. The proofs rely on a conditional central limit theorem for nonidentical random variables, which has an interest on its own.

Original languageEnglish
Pages (from-to)1249-1291
Number of pages43
JournalAnnals of Applied Probability
Issue number2
Publication statusPublished - 2018 Apr 1

Subject classification (UKÄ)

  • Probability Theory and Statistics


  • Coulomb gas
  • Gibbs ensemble.
  • Phase transitions


Dive into the research topics of 'Phase transitions in the one-dimensional coulomb gas ensembles'. Together they form a unique fingerprint.

Cite this