TY - JOUR
T1 - Plasma Protein Profiling of Incident Cardiovascular Diseases
T2 - A Multisample Evaluation
AU - Lind, Lars
AU - Titova, Olga
AU - Zeng, Rui
AU - Zanetti, Daniela
AU - Ingelsson, Martin
AU - Gustafsson, Stefan
AU - Sundström, Johan
AU - Arnlov, Johan
AU - Elmståhl, Sölve
AU - Assimes, Themistocles
AU - Michaëlsson, Karl
PY - 2023/12
Y1 - 2023/12
N2 - BACKGROUND: Proteomic profiling could potentially disclose new pathophysiological pathways for cardiovascular diseases (CVD) and improve prediction at the individual level. We therefore aimed to study the plasma protein profile associated with the incidence of different CVDs. METHODS: Plasma levels of 245 proteins suspected to be linked to CVD or metabolism were measured in 4 Swedish prospective population-based cohorts (SIMPLER [Swedish Infrastructure for Medical Population-Based Life-Course and Environmental Research], ULSAM (Uppsala Longitudinal Study of Adult Men), EpiHealth, and POEM [Prospective Investigation of Obesity, Energy Production, and Metabolism]) comprising 11 869 individuals, free of CVD diagnoses at baseline. Our primary CVD outcome was defined by a combined end point that included either incident myocardial infarction, stroke, or heart failure. RESULTS: Using a discovery/validation approach, 42 proteins were associated with our primary composite end point occurring in 1163 subjects. In separate meta-analyses for each of the 3 CVD outcomes, 49 proteins were related to myocardial infarction, 34 to ischemic stroke, and 109 to heart failure. Thirteen proteins were related to all 3 outcomes. Of those, urokinase plasminogen activator surface receptor, adrenomedullin, and KIM-1 (kidney injury molecule 1) were also related to several markers of subclinical CVD in Prospective Investigation of Obesity, Energy production and Metabolism, reflecting myocardial or arterial pathologies. In prediction analysis, a lasso selection of 11 proteins in ULSAM improved the discrimination of CVD by 3.3% (P<0.0001) in SIMPLER when added to traditional risk factors. CONCLUSIONS: Protein profiling in multiple samples disclosed several new proteins to be associated with subsequent myocardial infarction, stroke, and heart failure, suggesting common pathophysiological pathways for these diseases. KIM-1, urokinase plasminogen activator surface receptor, and adrenomedullin were novel early markers of CVD. A selection of 11 proteins improved the discrimination of CVD.
AB - BACKGROUND: Proteomic profiling could potentially disclose new pathophysiological pathways for cardiovascular diseases (CVD) and improve prediction at the individual level. We therefore aimed to study the plasma protein profile associated with the incidence of different CVDs. METHODS: Plasma levels of 245 proteins suspected to be linked to CVD or metabolism were measured in 4 Swedish prospective population-based cohorts (SIMPLER [Swedish Infrastructure for Medical Population-Based Life-Course and Environmental Research], ULSAM (Uppsala Longitudinal Study of Adult Men), EpiHealth, and POEM [Prospective Investigation of Obesity, Energy Production, and Metabolism]) comprising 11 869 individuals, free of CVD diagnoses at baseline. Our primary CVD outcome was defined by a combined end point that included either incident myocardial infarction, stroke, or heart failure. RESULTS: Using a discovery/validation approach, 42 proteins were associated with our primary composite end point occurring in 1163 subjects. In separate meta-analyses for each of the 3 CVD outcomes, 49 proteins were related to myocardial infarction, 34 to ischemic stroke, and 109 to heart failure. Thirteen proteins were related to all 3 outcomes. Of those, urokinase plasminogen activator surface receptor, adrenomedullin, and KIM-1 (kidney injury molecule 1) were also related to several markers of subclinical CVD in Prospective Investigation of Obesity, Energy production and Metabolism, reflecting myocardial or arterial pathologies. In prediction analysis, a lasso selection of 11 proteins in ULSAM improved the discrimination of CVD by 3.3% (P<0.0001) in SIMPLER when added to traditional risk factors. CONCLUSIONS: Protein profiling in multiple samples disclosed several new proteins to be associated with subsequent myocardial infarction, stroke, and heart failure, suggesting common pathophysiological pathways for these diseases. KIM-1, urokinase plasminogen activator surface receptor, and adrenomedullin were novel early markers of CVD. A selection of 11 proteins improved the discrimination of CVD.
KW - biomarkers
KW - cardiovascular diseases
KW - heart failure
KW - ischemic stroke
KW - myocardial infarction
U2 - 10.1161/CIRCGEN.123.004233
DO - 10.1161/CIRCGEN.123.004233
M3 - Article
C2 - 38014560
AN - SCOPUS:85180352483
SN - 2574-8300
VL - 16
JO - Circulation: Genomic and Precision Medicine
JF - Circulation: Genomic and Precision Medicine
IS - 6
M1 - E004233
ER -