Abstract
Pathogenic bacteria often produce potent proteases capable of destroying host tissue thereby providing the bacteria with tools for spreading and nutrient access. This thesis describes how group A, C and G streptococci can acquire surface bound protease activity through an alternative mechanism, namely by binding and activation of the human protease precursor plasminogen.
Group A streptococci of certain serotypes (M33, M41, M52, M53 and M56) were found to efficiently bind plasminogen. Similar to a previously described protein (PAM) expressed by a M53 strain, the plasminogen-binding surface proteins of the other four serotypes belonged to the M protein family, known to contain major virulence factors of group A streptococci. In addition, a subset of group C and G streptococci were shown to bind plasminogen through M-like proteins.
In binding experiments with recombinantly produced fragments and a synthetic pepide we located the plasminogen-binding site of protein PAM to a 29 amino acid region containing a twice-repeated sequence. Two lysine residues within this sequence appeared to be critical for the interaction with plasminogen.
The major binding site for PAM to plasminogen was localised to kringle two of human plasminogen. PAM reacted poorly with plasminogen from some other species, including rheusus plasminogen which only differs from the human form in two positions.
PAM-expressing bacteria grown in human plasma acquired surface associated plasmin activiy in spite of the presence of physiological plasmin inhibitors. A chimerical M-like protein, harbouring the plasminogen-binding motif of PAM, transferred this ability to another streptococcal strain. Inactivation of the streptokinase gene abolished surface plasmin acquisition whereas addítion of exogenous streptokinase overcame this block.
Group A streptococci of certain serotypes (M33, M41, M52, M53 and M56) were found to efficiently bind plasminogen. Similar to a previously described protein (PAM) expressed by a M53 strain, the plasminogen-binding surface proteins of the other four serotypes belonged to the M protein family, known to contain major virulence factors of group A streptococci. In addition, a subset of group C and G streptococci were shown to bind plasminogen through M-like proteins.
In binding experiments with recombinantly produced fragments and a synthetic pepide we located the plasminogen-binding site of protein PAM to a 29 amino acid region containing a twice-repeated sequence. Two lysine residues within this sequence appeared to be critical for the interaction with plasminogen.
The major binding site for PAM to plasminogen was localised to kringle two of human plasminogen. PAM reacted poorly with plasminogen from some other species, including rheusus plasminogen which only differs from the human form in two positions.
PAM-expressing bacteria grown in human plasma acquired surface associated plasmin activiy in spite of the presence of physiological plasmin inhibitors. A chimerical M-like protein, harbouring the plasminogen-binding motif of PAM, transferred this ability to another streptococcal strain. Inactivation of the streptokinase gene abolished surface plasmin acquisition whereas addítion of exogenous streptokinase overcame this block.
Original language | English |
---|---|
Qualification | Doctor |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 1999 Sept 17 |
Publisher | |
ISBN (Print) | 91-628-3672-2 |
Publication status | Published - 1999 |
Bibliographical note
Defence detailsDate: 1999-09-17
Time: 10:15
Place: Rune Grubb salen, BMC, Sölvegatan 19, Lund
External reviewer(s)
Name: Bessen, Debra E
Title: Dr
Affiliation: Yale University School of Medicine
---
Subject classification (UKÄ)
- Microbiology in the medical area
- Immunology in the medical area
Free keywords
- bacteriology
- Microbiology
- M protein
- streptokinase
- kringles
- plasmin
- Streptococcus pyogenes
- plasminogen
- virology
- mycology
- Mikrobiologi
- bakteriologi
- virologi
- mykologi