Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.

    Research output: Contribution to journalArticlepeer-review

    Abstract

    3-Hydroxypropionic acid (3-HP) is an important platform chemical for the biobased chemical industry. Lactobacillus reuteri produces 3-HP from glycerol via 3-hydroxypropionaldehyde (3-HPA) through a CoA-dependent propanediol utilization (Pdu) pathway. This study was performed to verify and evaluate the pathway comprising propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL), and propionate kinase (PduW) for formation of 3-HP from 3-HPA. The pathway was confirmed using recombinant Escherichia coli co-expressing PduP, PduL and PduW of L. reuteri DSM 20016 and mutants lacking expression of either enzyme. Growing and resting cells of the recombinant strain produced 3-HP with a yield of 0.3mol/mol and 1mol/mol, respectively, from 3-HPA. 3-HP was the sole product with resting cells, while growing cells produced 1,3-propanediol as co-product. 3-HP production from glycerol was achieved with a yield of 0.68mol/mol by feeding recombinant E. coli with 3-HPA produced by L. reuteri and recovered using bisulfite-functionalized resin.
    Original languageEnglish
    Pages (from-to)214-221
    JournalBioresource Technology
    Volume180
    DOIs
    Publication statusPublished - 2015

    Subject classification (UKÄ)

    • Industrial Biotechnology

    Fingerprint

    Dive into the research topics of 'Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.'. Together they form a unique fingerprint.

    Cite this