Projects per year
Abstract
Objective
To validate a quantitative high performance liquid chromatography (HPLC) assay for chondroitin sulfate (CS) and hyaluronic acid (HA) in synovial fluid, and to analyze glycan-patterns in patient samples.
Design
Synovial fluid from osteoarthritis (OA, n = 25) and knee-injury (n = 13) patients, a synovial fluid pool (SF-control) and purified aggrecan, were chondroitinase digested and together with CS- and HA-standards fluorophore labelled prior to quantitative HPLC analysis. N-glycan profiles of synovial fluid and aggrecan were assessed by mass spectrometry.
Results
Unsaturated uronic acid and sulfated-N-acetylgalactosamine (ΔUA-GalNAc4S and ΔUA-GalNAc6S) contributed to 95% of the total CS-signal in the SF-control sample. For HA and the CS variants in SF-control the intra- and inter-experiment coefficient of variation was between 3–12% and 11–19%, respectively; tenfold dilution gave recoveries between 74 and 122%, and biofluid stability test (room temperature storage and freeze-thaw cycles) showed recoveries between 81 and 140%. Synovial fluid concentrations of the CS variants ΔUA-GalNAc6S and ΔUA2S-GalNAc6S were three times higher in the recent injury group compared to the OA group, while HA was four times lower. Sixty-one different N-glycans were detected in the synovial fluid samples, but there were no differences in levels of N-glycan classes between patient groups. The CS-profile (levels of ΔUA-GalNAc4S and ΔUA-GalNAc6S) in synovial fluid resembled that of purified aggrecan from corresponding samples; the contribution to the N-glycan profile in synovial fluid from aggrecan was low.
Conclusions
The HPLC-assay is suitable for analyzing CS variants and HA in synovial fluid samples, and the GAG-pattern differs between OA and recently knee injured subjects.
To validate a quantitative high performance liquid chromatography (HPLC) assay for chondroitin sulfate (CS) and hyaluronic acid (HA) in synovial fluid, and to analyze glycan-patterns in patient samples.
Design
Synovial fluid from osteoarthritis (OA, n = 25) and knee-injury (n = 13) patients, a synovial fluid pool (SF-control) and purified aggrecan, were chondroitinase digested and together with CS- and HA-standards fluorophore labelled prior to quantitative HPLC analysis. N-glycan profiles of synovial fluid and aggrecan were assessed by mass spectrometry.
Results
Unsaturated uronic acid and sulfated-N-acetylgalactosamine (ΔUA-GalNAc4S and ΔUA-GalNAc6S) contributed to 95% of the total CS-signal in the SF-control sample. For HA and the CS variants in SF-control the intra- and inter-experiment coefficient of variation was between 3–12% and 11–19%, respectively; tenfold dilution gave recoveries between 74 and 122%, and biofluid stability test (room temperature storage and freeze-thaw cycles) showed recoveries between 81 and 140%. Synovial fluid concentrations of the CS variants ΔUA-GalNAc6S and ΔUA2S-GalNAc6S were three times higher in the recent injury group compared to the OA group, while HA was four times lower. Sixty-one different N-glycans were detected in the synovial fluid samples, but there were no differences in levels of N-glycan classes between patient groups. The CS-profile (levels of ΔUA-GalNAc4S and ΔUA-GalNAc6S) in synovial fluid resembled that of purified aggrecan from corresponding samples; the contribution to the N-glycan profile in synovial fluid from aggrecan was low.
Conclusions
The HPLC-assay is suitable for analyzing CS variants and HA in synovial fluid samples, and the GAG-pattern differs between OA and recently knee injured subjects.
Original language | English |
---|---|
Article number | 100380 |
Pages (from-to) | 1-11 |
Journal | Osteoarthritis and Cartilage Open |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2023 |
Subject classification (UKÄ)
- Analytical Chemistry
Fingerprint
Dive into the research topics of 'Quantification of chondroitin sulfate, hyaluronic acid and N-glycans in synovial fluid – A technical performance study'. Together they form a unique fingerprint.Projects
- 1 Active
-
The role of glycans in aggrecan degradation and as biomarkers in osteoarthritis
Andersson, E. (Researcher), Struglics, A. (Researcher), Tykesson, E. (Researcher) & Swärd, P. (Researcher)
2021/06/01 → …
Project: Dissertation