TY - JOUR
T1 - Quantitation of bacterial adhesion to polymer surfaces by bioluminescence
AU - Stollenwerk, Maria
AU - Fallgren, Corina
AU - Lundberg, Fredrik
AU - Tegenfeldt, Jonas O.
AU - Montelius, Lars
AU - Ljungh, Åsa
PY - 1998/1/1
Y1 - 1998/1/1
N2 - Quantitation of microbes adhering to a surface is commonly used in studies of microbial adhesion to different surfaces. We have quantified different staphylococcal strains adhering to polymer surfaces by measuring bacterial ATP (adenosine triphosphate) by bioluminescence. The method is sensitive, having a detection limit of 104 bacterial cells. Viable counting of bacterial cells may yield falsely low results due to the presence of 'dormant' and adherent bacteria. By using bioluminescence, this can be avoided. Cells of different bacterial species and cells of strains of the same species were shown to differ significantly in their basal ATP content (8.7 x 10-13 - 5.2 x 10-22 MATP). The size of adherent and planktonic bacteria decreased with time (0.7 μm → 0.3 μm, 20 days). During incubation in nutrient-poor buffer ('starvation'), the ATP content of adherent bacteria decreased after 24-96 h whereas that of planktonic bacteria was stable over 20 days. The presence of human serum or plasma did not interfere significantly with the test results. Since the ATP concentration of bacterial strains of different species varies and is also influenced by the growth conditions of bacteria (solid or liquid culture medium), a species-specific standard curve has to be established for bacteria grown under the same culture conditions. We conclude that the method is a sensitive tool to quantify adherent bacteria during experiments lasting for less than 6 h and constitutes a valuable method to be used in conjunction with different microscopical techniques.
AB - Quantitation of microbes adhering to a surface is commonly used in studies of microbial adhesion to different surfaces. We have quantified different staphylococcal strains adhering to polymer surfaces by measuring bacterial ATP (adenosine triphosphate) by bioluminescence. The method is sensitive, having a detection limit of 104 bacterial cells. Viable counting of bacterial cells may yield falsely low results due to the presence of 'dormant' and adherent bacteria. By using bioluminescence, this can be avoided. Cells of different bacterial species and cells of strains of the same species were shown to differ significantly in their basal ATP content (8.7 x 10-13 - 5.2 x 10-22 MATP). The size of adherent and planktonic bacteria decreased with time (0.7 μm → 0.3 μm, 20 days). During incubation in nutrient-poor buffer ('starvation'), the ATP content of adherent bacteria decreased after 24-96 h whereas that of planktonic bacteria was stable over 20 days. The presence of human serum or plasma did not interfere significantly with the test results. Since the ATP concentration of bacterial strains of different species varies and is also influenced by the growth conditions of bacteria (solid or liquid culture medium), a species-specific standard curve has to be established for bacteria grown under the same culture conditions. We conclude that the method is a sensitive tool to quantify adherent bacteria during experiments lasting for less than 6 h and constitutes a valuable method to be used in conjunction with different microscopical techniques.
U2 - 10.1016/S0934-8840(98)80136-9
DO - 10.1016/S0934-8840(98)80136-9
M3 - Article
C2 - 9532260
AN - SCOPUS:0031951977
SN - 0934-8840
VL - 287
SP - 7
EP - 18
JO - Zentralblatt fur Bakteriologie
JF - Zentralblatt fur Bakteriologie
IS - 1-2
ER -