Quantum Chemical Interpretation of Protein Crystal Structure

Kristina Nilsson

Research output: ThesisDoctoral Thesis (compilation)

Abstract

An initial model in the crystallographic structure determination process, usually contains many errors. To produce an accurate model, one must carry out several cycles of crystallographic refinement. Because of the limited resolution typically obtained for biomolecules, the experimental data are usually supplemented by some sort of chemical information, typically in the form of a molecular-mechanics (MM) force field. The resulting model will strongly depend on the accuracy of this force field. For unusual molecules, such as metal centres, substrates, and inhibitors, i.e. hetero-compounds, force-field parameters are often lacking or are inaccurate.

This thesis describes two methods to improve the process of crystallographic refinement and address these problems.

First, Hess2FF, a method to automatically generate topology and parameter files for crystallographic refinement of hetero-compounds. We base the force field on a calculation of the Hessian matrix, which can easily be obtained with any modern theoretical chemistry software. We show that the force-field obtained in such a way may improve the crystal structure and that the interpretation of the final structure will be affected by the choice of the force field. Moreover, we test what level of theory is necessary to obtain a good force field and how the atom types are best selected.

Second, we show that it is possible to use a quantum-chemical method to locally improve protein crystal structures and to interpret them, e.g. by determining the protonation status of interesting molecules and the oxidation states of metal ions. The quantum refinement method, implemented in the software ComQum-X, gives accurate protein structures, which are in agreement with the crystallographic raw data. At the same time, the geometry of the quantum system is directly comparable to structures from quantum-chemical vacuum calculations.

Calculations have been performed on MMP (N-methylmesoporphyrin) bound to the enzyme ferrochelatase, the active site structure of cytochrome c553, an alcohol or a water molecule ligated to the active zinc ion in alcohol dehydrogenase, the iron-bound water molecule in iron superoxide dismutase, and a compound II structure in myoglobin.
Original languageEnglish
QualificationDoctor
Awarding Institution
  • Computational Chemistry
Supervisors/Advisors
  • [unknown], [unknown], Supervisor, External person
  • Ryde, Ulf, Supervisor
Award date2003 Dec 12
Publisher
ISBN (Print)91-7422-040-3
Publication statusPublished - 2003

Bibliographical note

Defence details

Date: 2003-12-12
Time: 10:15
Place: Room B Chemical Center, Lund

External reviewer(s)

Name: Morokuma, Keiji
Title: Prof.
Affiliation: [unknown]

---


Article: Quantum chemical geometry optimizations in proteins using crystallographic raw data;U. Ryde, L. Olsen, K. Nilsson;J. Comput. Chem.,23, 1058

Article: An automatic method to determine force-field parameters for hetero-compounds;K. Nilsson, D.Lecerof, E. Sigfridsson, U. Ryde;Acta Cryst. D., 59, 274

Article: Quantum Chemistry can locally improve protein crystal structures;U. Ryde, K. Nilsson;J. Am. Chem. Soc., published online, DOI:10.1021/ja0365328

Article: Protonation status of metal-bound ligands can be determined by quantum refinement;K. Nilsson, U. Ryde;J. Biol. Inorg. Chem., submitted

Article: The protonation status of compound II in myoglobin, studied by quantum refinement;K. Nilsson, H.-P. Hersleth, K. K. Andersson, U. Ryde;manuscript



The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)

Subject classification (UKÄ)

  • Theoretical Chemistry

Free keywords

  • structure
  • Theoretical chemistry
  • quantum chemistry
  • Teoretisk kemi
  • kvantkemi
  • protein
  • ComQum-X
  • Hess2FF
  • QM/MM
  • hetero-compound
  • metal
  • oxidation state
  • protonation
  • force field
  • quantum refinement
  • refinement

Fingerprint

Dive into the research topics of 'Quantum Chemical Interpretation of Protein Crystal Structure'. Together they form a unique fingerprint.

Cite this