Abstract
Coherent light sources have been widely used in control schemes that exploit quantum interference effects to direct the outcome of photochemical processes. The adaptive shaping of laser pulses is a particularly powerful tool in this context: experimental output as feedback in an iterative learning loop refines the applied laser field to render it best suited to constraints set by the experimenter. This approach has been experimentally implemented to control a variety of processes, but the extent to which coherent excitation can also be used to direct the dynamics of complex molecular systems in a condensed-phase environment remains unclear. Here we report feedback-optimized coherent control over the energy-flow pathways in the light-harvesting antenna complex LH2 from Rhodopseudomonas acidophila, a photosynthetic purple bacterium. We show that phases imprinted by the light field mediate the branching ratio of energy transfer between intra- and intermolecular channels in the complex's donor acceptor system. This result illustrates that molecular complexity need not prevent coherent control, which can thus be extended to probe and affect biological functions.
Original language | English |
---|---|
Pages (from-to) | 533-535 |
Journal | Nature |
Volume | 417 |
Issue number | 6888 |
DOIs | |
Publication status | Published - 2002 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Chemical Physics (S) (011001060)
Subject classification (UKÄ)
- Atom and Molecular Physics and Optics
Free keywords
- Photosynthetic Reaction Center
- Molecular
- Models
- Light
- Kinetics
- Energy Transfer
- Bacterial : metabolism
- Protein Structure
- Quaternary
- Rhodopseudomonas : chemistry
- Rhodopseudomonas : metabolism
- Bacterial : chemistry