TY - JOUR
T1 - Radiative properties of neutral germanium obtained from excited-state lifetime and branching-ratio measurements and comparison with theoretical calculations
AU - Li, Z. S
AU - Norin, J
AU - Persson, Anders
AU - Wahlström, Claes-Göran
AU - Svanberg, Sune
AU - Doidge, P. S
AU - Biemont, E
PY - 1999
Y1 - 1999
N2 - Using time-resolved UV laser-induced fluorescence from a laser-produced plasma, natural radiative lifetimes have been measured for 21 levels of Ge I belonging to the odd-parity 4p4d, 4p5d, and 4p6s configurations. Stimulated Brillouin scattering in water has allowed us to compress Nd:YAG laser pulses pumping a dye laser (where YAG denotes yttrium aluminum garnet), thus yielding 1-ns tunable laser pulses to enable accurate measurements of short lifetimes. Branching ratios of Ge I have been measured by inductively coupled plasma emission spectrometry, the intensity calibration being performed by means of Ar lines emitted by a hollow-cathode lamp. The experimental lifetimes and branching ratios have been combined in order to provide a set of accurate transition probabilities for the 4p-5s and 4p-4d transitions. A relativistic Hartree-Fock; calculation, taking configuration-interaction and polarization effects into account, has been combined with a least-squares optimization procedure of the Slater and spin-orbit integrals in order to test the ability of this approach to correctly predict radiative properties of the group-IV elements. Good agreement between experimental and theoretical transition probability values has been achieved for most of the transitions considered.
AB - Using time-resolved UV laser-induced fluorescence from a laser-produced plasma, natural radiative lifetimes have been measured for 21 levels of Ge I belonging to the odd-parity 4p4d, 4p5d, and 4p6s configurations. Stimulated Brillouin scattering in water has allowed us to compress Nd:YAG laser pulses pumping a dye laser (where YAG denotes yttrium aluminum garnet), thus yielding 1-ns tunable laser pulses to enable accurate measurements of short lifetimes. Branching ratios of Ge I have been measured by inductively coupled plasma emission spectrometry, the intensity calibration being performed by means of Ar lines emitted by a hollow-cathode lamp. The experimental lifetimes and branching ratios have been combined in order to provide a set of accurate transition probabilities for the 4p-5s and 4p-4d transitions. A relativistic Hartree-Fock; calculation, taking configuration-interaction and polarization effects into account, has been combined with a least-squares optimization procedure of the Slater and spin-orbit integrals in order to test the ability of this approach to correctly predict radiative properties of the group-IV elements. Good agreement between experimental and theoretical transition probability values has been achieved for most of the transitions considered.
U2 - 10.1103/PhysRevA.60.198
DO - 10.1103/PhysRevA.60.198
M3 - Article
SN - 1050-2947
VL - 60
SP - 198
EP - 208
JO - Physical Review A (Atomic, Molecular and Optical Physics)
JF - Physical Review A (Atomic, Molecular and Optical Physics)
IS - 1
ER -