Abstract
The reaction rate coefficient k(CH3Br + OH) has been determined in the temperature range 298-373 K, using pulse radiolysis/UV kinetic spectroscopy, and at 298 K using a relative rate method. The Arrhenius expression obtained from a fit to the experimental results is (2.9 +/- 0.9) x 10(-12) exp(-(1230 +/- 125)/T) cm(3) molecule(-1) s(-1), which is greater than the expression currently recommended. The relative rate experiments give k(298 K) = (4.13 +/- 0.63) x 10(-14) cm(3) molecule(-1) s(-1). The results of the absolute and relative rate experiments indicate that the source budget of atmospheric CH3Br should be reinvestigated, as was recently done for CH3Cl. (C) 2013 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 70-74 |
Journal | Atmospheric Environment |
Volume | 80 |
DOIs | |
Publication status | Published - 2013 |
Subject classification (UKÄ)
- Meteorology and Atmospheric Sciences
Free keywords
- Methyl bromide
- Atmospheric chemistry
- Reaction kinetics