Abstract
In certain cases analytical derivation of physics-based models of robots is difficult or even impossible. A potential workaround is the approximation of robot models from sensor data-streams employing machine learning approaches. In this paper, the inverse dynamics models are learned by employing a novel real-time deep learning algorithm. The algorithm exploits the methods of self-organized learning, reservoir computing and Bayesian inference. It is evaluated and compared to other state of the art algorithms in terms of generalization ability, convergence and adaptability using five datasets gathered from four robots. Results show that the proposed algorithm can adapt to real-time changes of the inverse dynamics model significantly better than the other state of the art algorithms.
Original language | English |
---|---|
Title of host publication | 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), |
Place of Publication | United States |
Publisher | IEEE - Institute of Electrical and Electronics Engineers Inc. |
Pages | 3442-3448 |
Number of pages | 7 |
ISBN (Electronic) | 978-1-4799-9994-1 |
DOIs | |
Publication status | Published - 2015 Sept 28 |
Externally published | Yes |
Event | IEEE/RSJ International Conference on Intelligent Robots and Systems , 2015 - Hamburg, Hamburg, Germany Duration: 2015 Sept 28 → 2015 Oct 2 |
Conference
Conference | IEEE/RSJ International Conference on Intelligent Robots and Systems , 2015 |
---|---|
Abbreviated title | IROS2015 |
Country/Territory | Germany |
City | Hamburg |
Period | 2015/09/28 → 2015/10/02 |
Free keywords
- approximation theory
- belief networks
- inference mechanisms
- learning (artificial intelligence)
- real-time systems
- Bayesian inference
- machine learning
- physics-based models
- real-time deep learning
- reservoir computing
- robotic manipulator
- inverse dynamics
- self-organized learning
- sensor data-streams
- Adaptation models
- computational modeling
- Heuristic algorithms
- Manipulator dynamics
- Robot sensing systems